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Abstract. An exact method for direct calculation of the Jost functions and Jost solutions
for non-central analytic potentials which couple partial waves of different angular momenta is
presented. A combination of the variable–constant method with the complex coordinate rotation
is used to replace the matrix Schrödinger equation by an equivalent system of linear first-order
differential equations. Solving these equations numerically, the Jost functions can be obtained to
any desired accuracy for all complex momenta of physical interest, including the spectral points
corresponding to bound and resonant states. The effectiveness of the method is demonstrated
using the Reid soft-core and Moscow nucleon–nucleon potentials which involve tensor forces.

1. Introduction

Almost any textbook on the scattering theory has a chapter devoted to the Jost function, but
none of them gives a practical method for its calculation; they provide instead equations
expressing the Jost function in terms of the wavefunction. However, to use them one must
find the wavefunction first which means that the problem is practically solved and nothing
more is needed. Thus one usually gets a feeling that the Jost function is a pure mathematical
object, elegant and useful in formal theory, but impractical in computations. This is even
more pronounced in problems with non-central potentials which couple partial waves of
different angular momenta. To the best of our knowledge, the classical book by Newton
[1] is the only one in which the coupled partial wave Jost function, which in fact is a
matrix-function, is considered and the only calculation of the Jost matrix was done in [2].
The need of such calculations is of course indisputable since many potentials describing
interactions between molecules, atoms, and nuclei are non-central.

It is widely believed that the Jost function for partial waves coupled by potentials which
are non-zero at the origin, is singular and therefore impractical. However, it is not the Jost
function but the Jost solution that diverges atr = 0. Of course if one wants to obtain
the Jost function via the Jost solution, in analogy to uncoupled waves, then the problem of
singularity is inevitable and thus one must resort to alternative methods.

In this work, we show that for the class of so-called analytic potentials (which are
holomorfic functions ofr in the first quadrant of the complexr-plane) the Jost function can
be calculated directly by simply solving certain first-order coupled differential equations.
These equations are based on the variable-phase approach [3] and their solution at any
fixed value of the radial variabler, provides the Jost function and its complex conjugate
counterpart, which correspond to the potential truncated at the pointr. Such equations have
been proposed for bound- and scattering-state calculations, that is for calculations in the
upper half of the complex momentum plane [4].

† Permanent address: Joint Institute for Nuclear Research, Dubna, 141980, Russia.
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Exploiting the idea of the complex rotation of the radial coordinate [5],r → r exp(iθ),
the method was extended to the unphysical sheet so that the resonance-state region was also
included [6]. This was possible because the coordinate rotation with a sufficiently large
θ > 0, makes the resonance state wavefunction quadratically integrable while the energies
and widths of the bound and resonance states are not affected since the Jost function and the
positions of its zeros do not depend onr. The effectiveness of the method was demonstrated
in [7] for potentials with and without a Coulomb tail where high accuracy for very narrow
and very broad resonances was obtained. Its suitability in locating Regge poles in the
complex angular momentum plane was also demonstrated. In this paper we generalize
the method to non-central potentials that couple different partial waves and show that the
complex rotation enables us to calculate the corresponding Jost matrix at all points of the
complex momentum plane of physical interest. In a numerical example we demonstrate that
a high accuracy can also be achieved.

This paper is organized as follows. In sections 2 and 3 our formalism is presented,
while in section 4 the method is applied to several examples and the results obtained are
discussed. Our conclusions are given in section 5. Finally some mathematical details and
proofs are given in the appendix.

2. Formalism

Consider the system of two particles interacting via a non-central potentialV (r). Such
potentials appear in many physical problems, such as in collisions of elementary and
composite particles with non-spherical molecules and in problems involving spin-dependent
forces.

Since these types of potentials are not rotationally invariant, the angular momentum`

associated with the interparticle coordinater, is not conserved. Therefore a partial-wave
decomposition of the Schrödinger equation results in a system of coupled equations for
states with different̀ . In general this system consists of an infinite number of equations,
and one has to truncate it in order to make it tractable. There are, however, certain problems
where only a few partial waves are coupled to each other, namely, those in which the non-
central part of the potential stems from the non-zero spins of the particles involved. In such
systems the total angular momentum,

J = `+ s
is conserved and the total spins defines the maximal number of coupled partial waves by
the triangle condition

|J − s| 6 ` 6 |J + s|. (1)

We shall consider a problem of this kind though all formulae remain applicable to the more
general case of coupled partial waves.

2.1. Partial waves for discrete spectrum

Wavefunctions9kJM(r) describing bound and Siegert (resonance) states are specified by a
definite value of the momentumk, the total angular momentumJ and its third component
M, and the parityπ which is omitted in our notation. Such wavefunctions can be expanded
in terms of the spin-angular functions

YJM[`] (r̂) ≡
∑
mµ

CJM`msµY`m(r̂)χsµ
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as

9kJM(r) = 1

r

∑
[`]

YJM[`] (r̂)u
J
[`](k, r) (2)

where uJ[`](k, r) are unknown radial functions, and [`] stands for the pair of subscripts
ls. This notation has the advantage that all formulae remain the same for non-central
interactions of spinless particles in which case the symbol [`] stands for another pair of
quantum numbers, namely,`m instead of̀ s. Furthermore all formulae can be generalized
to coupled hyper-radial equations simply by replacing [`] by [L] whereL is the grand orbital
quantum number (for hyper-radial equations [8]). For simplicity we drop the quantum
numbersJM where convenient.

Substituting expansion (2) into the Schrödinger equation, one arrives at the following
system of coupled equations

[∂2
r + k2− `(`+ 1)/r2]uJ[`](k, r) =

∑
[`′]

WJ
[`][`′](r)u

J
[`′](k, r) (3)

where the index [̀] runs over all combinations of̀ ands allowed by the triangle condition
(1) and the parity conservation law. The elements of the matrixW are those of the operator
V (r) (we useh̄=1),

WJ
[`][`′](r) ≡ 2m〈YJM[`] |V (r)|YJM[`′] 〉 (4)

sandwiched between the spin-angular functions (m is the reduced mass). We assume that
these matrix elements are less singular at the origin than the centrifugal term,

lim
r→0

r2WJ
[`][`′](r) = 0 (5)

and vanish at large distances faster than the Coulomb potential,

lim
r→∞ rW

J
[`][`′](r) = 0. (6)

2.2. Partial waves for continuum

The scattering-state wavefunction9ksµ(r) is defined by the real vectork (the momentum of
the incoming wave), total spins, and its third componentµ. The partial-wave decomposition
for this function is more complicated than for the bound and Siegert states because the
scattering state depends on the direction of the incident momentumk. Since9ksµ(r)
depends on the two vectorsk andr, we have to perform partial-wave analysis in both the
momentum and coordinate space[1, 9],

9ksµ(r) =
√

2

π

1

kr

∑
JM[`′]`

YJM[`′] (r̂)u
J
[`′][`](k, r)Y

JM∗
[`]µ (k̂) (7)

where

Y JM[`]µ(k̂) ≡ i−`
∑
m

CJM`msµY`m(k̂)

and the radial wavefunctionuJ[`′][`](k, r) obeys the same equation asuJ[`](k, r),

[∂2
r + k2− `(`+ 1)/r2]uJ[`][`′](k, r) =

∑
[`′′]

WJ
[`][`′′](r)u

J
[`′′][`′](k, r). (8)
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Physical solutions of equations (3) and (8) are defined by the requirement that they must
be regular at the origin,

u[`](k, r)−→
r→0

0

u[`′][`](k, r)−→
r→0

0
(9)

and by certain, physically motivated, boundary conditions at infinity,

u[`](k, r)−→
r→∞U[`](k, r)

u[`′][`](k, r)−→
r→∞U[`′][`](k, r)

(10)

which are different for the various problems (bound, scattering and resonant states) and
change drastically when we go over from one case to another. It would be, of course, more
convenient to deal with a universal boundary conditions imposed at a single point. This
can be achieved if we consider the general regular solution of equation (3) defined only by
the condition (9) and not subjected to any restrictions at larger.

2.3. Regular basis

From the wide variety of solutions obeying (9) and having different behaviour at large
distances we choose only those which are linearly independent. They form the fundamental
system of regular solutions which we callregular basis. Any regular solution with a
specific behaviour at large distances is simply a linear combination of the basic solutions.
Thus, instead of having different mathematical procedures for the various types of physical
problems we can have only one for the regular basis. In the next section we show how the
bound-, scattering- and resonant-state wavefunctions can be constructed in terms of such a
basis.

Let us consider equation (3) as a matrix equation. Then, each of its solutions is a
column matrix. From the general theory of differential equations it is known that there are
as many independent regular column solutions of equation (3) as the column dimension, i.e.
the number of equations in the system. These columns can be combined in a square matrix
‖8[`][`′]‖ satisfying

[∂2
r + k2− `(`+ 1)/r2]8[`][`′](k, r) =

∑
[`′′]

W[`][`′′](r)8[`′′][`′](k, r) (11)

with

8[`][`′](k, r)−→
r→0

0 ∀[`], [`′]. (12)

Since equation (11) is of second order and singular atr = 0, condition (12) cannot be
reduced to the simple requirement

8[`][`′](k, 0) = 0 ∀[`], [`′]

as the behaviour of each element of the matrix‖8(k, r)‖ and its first derivative∂r‖8(k, r)‖
in the immediate vicinity of the pointr = 0 are also needed.

As in any other space, the basis can be chosen in an infinite number of ways by
specifying the behaviour (12). The possible choice of condition (12), however, is not
entirely arbitrary. In [10] it was shown (see also an alternative proof in the appendix) that
for potentials fulfilling restriction (5), the regular columns are only linearly independent if
they vanish near the pointr = 0 in such a way that

lim
r→0

8[`][`′](k, r)

r`
′+1

= δ[`][`′] . (13)
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The primed angular momentum in the denominator means that in each row of the matrix
‖8[`][`′]‖ the elements, situated further to the right, vanish faster whenr → 0. Even without
a formal proof it is clear that such a condition guarantees the linear independence of the
columns since in each row the elements have different behaviours (different powers ofr)
nearr = 0. If instead of the rows, we look at the columns, we find from equation (13) that
in each of them all off-diagonal elements vanish faster than the diagonal one.

Despite restriction (13), we still have some freedom in specifying the derivatives
∂r8[`][`′] . Indeed, we can choose at least an arbitraryr-independent coefficient in each
element of the matrix‖8[`][`′]‖. We mention here that it was this freedom which was
exploited by Newton in his procedure of regularization of the integral equation for8[`][`′]
[1].

To be consistent with the definition of the regular solution for the uncoupled partial
waves [11], we choose the normalization coefficients in such a way that

lim
r→0

8[`][`′](k, r)

j`′(kr)
= δ[`][`′] (14)

wherej`(z) is the Riccati–Bessel function [12]. This condition defines the leading terms
of the near-origin behaviour of the diagonal elements of the matrix‖8[`][`′]‖ and their first
derivatives. The off-diagonal elements, however, remain obscure since condition (14) only
implies that8[`][`′] ∼ o(j`′), ` 6= `′. As pointed out by Newton [1], it is impossible to define
them unambiguously by boundary conditions which are independent of the behaviour of the
potential near the origin. In the appendix we show that this is indeed the case and we give
a simple method for obtaining series expansions (in powers ofr) of all matrix elements of
‖8(k, r)‖ at r ∼ 0. Of course, the terms of such series depend also on the potential.

In principle, from the knowledge of such expansions, we could calculate the matrix
‖8(k, r)‖ by solving the Schr̈odinger equation (11) directly. It is, however, much
more convenient to transform equation (11) into another equivalent form suitable for the
construction of different physical solutions. For this we introduce two new unknown
matrices‖F (±)[`][`′](k, r)‖ and assume the following ansatz for the regular solution

8[`][`′](k, r) = 1
2[h(+)` (kr)F

(+)
[`][`′](k, r)+ h(−)` (kr)F

(−)
[`][`′](k, r)] (15)

where the Riccati–Hankel functionsh(±)` are linear combinations of the Riccati–Bessel and
Riccati–Neumann functionsh(±)` (z) ≡ j`(z)± in`(z) [12]. The reason for choosing such an
ansatz will become clear in the next section. Here it is sufficient to say that the explicit
implantation of the functionsh(±)` (kr) into the construction of the basis guarantees the
correct asymptotic behaviour of the basic solutions at larger.

Since instead of one unknown matrix‖8‖ we introduced two matrices‖F (±)‖, they
must be subjected to an additional constraint. The most convenient is the Lagrange condition

h
(+)
` (kr)∂rF

(+)
[`][`′](k, r)+ h(−)` (kr)∂rF

(−)
[`][`′](k, r) = 0 (16)

which is a standard choice in the variable–constant method for solving differential equations
[13]. Substituting (15) into equation (11) and using condition (16), we obtain the following
first-order coupled differential matrix equations

∂rF
(±)
[`][`′](k, r) = ±

h
(∓)
` (kr)

2ik

∑
[`′′]

W[`][`′′](r){h(+)`′′ (kr)F
(+)
[`′′][`′](k, r)+ h(−)`′′ (kr)F

(−)
[`′′][`′](k, r)}.

(17)
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As we show in the appendix, the boundary condition (14) can be rewritten as

lim
r→0

[
j`(kr)F

(±)
[`][`′](k, r)

j`′(kr)

]
= δ[`][`′] (18)

and a series expansion for‖F (±)[`][`′](k, r)‖ in powers ofr near the pointr = 0 can be found
iteratively as follows. Starting from the unit matrices

F
(±)(0)
[`][`′] (k, r) = δ[`][`′] (19)

we obtain all the subsequent iterations for‖F (±)‖ by evaluating the indefinite integrals (the
primitive functions)

F
(±)(n+1)
[`][`′] (k, r) = δ[`][`′] ± 1

2ik

∫
h
(∓)
` (kr)

∑
[`′′]

W[`][`′′](r)

×[h(+)`′′ (kr)F
(+)(n)
[`][`′] (k, r)+ h(−)`′′ (kr)F

(−)(n)
[`][`′] (k, r)] dr (20)

where h(∓)` (kr) and W[`][`′′](r) are replaced by theirr-power series expansions and the
arbitrary constants of the integration are zero. We shall give an explicit example for this
expansion in section 4.

In contrast to equation (11), the equations for the new unknown matrices‖F (±)(k, r)‖
are of first order. However, the pointr = 0 is generally a singular point because the Riccati–
Hankel functions have the short-range behaviour∼ r−` and according to (5) the potential
may also behave near this point as∼ r−(2−ε), ε > 0. Therefore equations (17) cannot be
solved numerically with the boundary conditions for‖F (±)(k, r)‖ at r = 0. Instead, we
may use the analytical solutions of them in a small interval(0, δ] (in the form of the above
series expansions) and impose the boundary conditions atr = δ as

F
(±)
[`][`′](k, δ) ≈ F (±)(N)[`][`′] (k, δ). (21)

Certain elements of the matrices‖F (±)(k, r)‖ could diverge whenr → 0 (see the appendix).
This, however, does not cause any problem in the iterative procedure (20) since the
integration is represented by an indefinite integral. It is emphasized that although certain
elements of‖F (±)‖ diverge, the matrix‖8‖ must always, by definition, be regular. This
can also be seen from the fact that the boundary conditions (18) follow from the regular
boundary conditions (14). Therefore the singularities of the two terms of the ansatz (15)
should cancel out. As shown in the appendix, this is indeed the case. The system of
equations (17) together with the boundary values (21) represent a well-defined differential
problem, a solution of which gives the regular basis in the form (15).

2.4. Jost matrices

It can be proved (see the appendix) that for Imk = 0 the right-hand side of equations (17)
vanishes whenr → ∞. Since the corresponding derivatives also vanish, the functions
F
(±)
[`][`′](k, r) becomer-independent and thus, for momenta corresponding to the scattering

states, we have

8[`][`′](k, r)−→
r→∞

1
2[h(+)` (kr)F (+)[`][`′](k)+ h(−)` (kr)F (−)[`][`′](k)] (22)

where

F (±)[`][`′](k) = lim
r→∞F

(±)
[`][`′](k, r). (23)
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We may call theser-independent matrices‖F (±)‖ Jost matrices. The products

h
(±)
` (kr)

∑
[`′′]

‖F (±)[`][`′′](k, r)‖ · ‖F (±)[`′′][`′](k)‖−1 (24)

which behave asymptotically like∼ e±ikr , in this respect are similar to the commonly used
Jost solutions.

In the context of coupled partial waves the Jost solutions of equation (11) may be defined
as matrix functions given by equation (15) in terms ofF (±) which obey equations (17) with
the boundary conditions

F
(+)
[`][`′](k, r)−→

r→∞

{
2 solution I

0 solution II
F
(−)
[`][`′](k, r)−→

r→∞

{
0 solution I

2 solution II.
(25)

Then at large distances the regular solution, which is a linear combination of the two
Jost solutions, consists of two terms of the type (24). Practically the Jost solutions can
be obtained by solving equations (17) inwards starting at a sufficiently larger with the
boundary values (25).

For complex values ofk the limits (23) generally exist in different domains of the
complexk-plane, namely,F (+)[`][`′](k) in the lower half (Imk 6 0) whileF (−)[`][`′](k) in the upper
half (Imk > 0). This is because, according to equations (17), the derivatives∂rF

(±)(k, r)
are proportional toh(∓)` (kr) with

h
(±)
` (kr)−→

r→∞∓i exp[±i(kr − `π/2)] (26)

vanishing in different domains of thek-plane, namely,

h
(+)
` (kr)−→

r→∞0 Im(kr) > 0 (27)

h
(−)
` (kr)−→

r→∞0 Im(kr) < 0. (28)

Thus, in general, the only area where the limits (23) simultaneously exist is the real axis†.
However, for a particular class of short-range potentials (decaying exponentially or faster)
the upper bound for the existence ofF (+) is shifted upwards and the lower bound forF (−)
downwards, which widens their common area to a band.

The difficulty concerning the existence of the limits (23), can be circumvented in the
same way as for central potentials [6, 7]. Indeed, conditions (27) and (28) involve the
imaginary part of the productkr and not of the momentum alone. Therefore, if, for example,
Im (kr) is negative we can make it positive by using the complex rotation method which
we describe next.

2.5. Complex rotation

In this method the radiusr is replaced by a complex one, namely

r = x exp(iθ) x > 0 06 |θ | < π

2
. (29)

The idea of complex rotation of the coordinate is not new. During World War II,
Hartree and co-workers at Manchester University used such a rotation to solve certain
differential equations describing radio-wave propagation in the atmosphere (for more details
see [14]). Nowadays the complex rotation is widely used for locating quantum resonances

† It can also be proved that both of these limits exist at all spectral pointsk0 with Im k0r > 0 (see the appendix).
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Figure 1. Complex rotation of the coordinate and corresponding domains of thek-plane where
the limits of the matrices‖F (±)(k, r)‖ exist.

by variational methods [5]. In contrast, our equations together with the complex rotation
can be used to locate resonances in an exact way.

Applying the complex transformation (29) to equations (17), we obtain

∂xF
(±)
[`][`′](k, xeiθ ) = ±eiθh

(∓)
` (kxeiθ )

2ik

∑
[`′′]

W[`][`′′](xeiθ )

×{h(+)`′′ (kxeiθ )F
(+)
[`′′][`′](k, xeiθ )+ h(−)`′′ (kxeiθ )F

(−)
[`′′][`′](k, xeiθ )}. (30)

The purpose of the rotation (29) is to make the imaginary part of the productkr positive or
negative, in calculatingF (−) or F (+) respectively, at points on thek-plane we are interested
in. Thus we have Imkr > 0 for all points above the dividing line shown in figure 1. This
line defined by the negative angleθ in the k-plane results from the rotation (29) in the
r-plane with positiveθ .

If the potential matrix‖W(r)‖ is an analytic function of the complex variabler and
obeys the conditions (5) and (6) along the ray (29), then the limit

lim
x→∞F

(−)
[`][`′](k, xeiθ ) = F (−)[`][`′](k) (31)

exists and is finite for allk on and above the dividing line [−∞e−iθ ,+∞e−iθ ] (for the
relevant proof of this statement see the appendix). At the same time the limit

lim
x→∞F

(+)
[`][`′](k, xeiθ ) = F (+)[`][`′](k) (32)

exists and is finite for allk on and below the dividing line. Moreover, when the limits (31)
and (32) exist the values ofF (±)[`][`′](k) are independent of the rotation angleθ as the Jost

function isr-independent and henceθ -independent. To calculate theF (−)[`][`′](k) for Im k < 0

we need to solve equation (30) at a sufficiently large positiveθ , and theF (+)[`][`′](k) for
Im k > 0 at a sufficiently large negativeθ .

2.6. Cancellation of the singularities

We note that although the ansatz (15) is suitable for large distances (see the next section),
it is not good for numerical calculations in the vicinity ofr = 0. Indeed, near this point the
matrices‖F (+)(k, r)‖ and ‖F (−)(k, r)‖ become identical and the singularities ofh(+)` (kr)

andh(−)` (kr) are cancelled. Although this does not formally cause any problem, in numerical
calculations the cancellation of singularities is always a source of possible numerical errors.
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These errors increase with increasing` since in this caseh(±)` (kr) becomes more singular.
Therefore, for larger̀ the point r = δ must be shifted further from the origin. This in
turn, requires more iterations of equation (20) to obtain the boundary valuesF

(±)
``′ (k, δ) to

a required accuracy.
There is another way to numerically handle the boundary condition problem. Since

1
2(h
+
` + h−` ) = j` and

1

2i
(h+` − h−` ) = n`

we may introduce a new pair of matrices

A[`][`′](k, r) ≡ 1
2[F (+)[`][`′](k, r)+ F (−)[`][`′](k, r)]

B[`][`′](k, r) ≡ 1

2i
[F (+)[`][`′](k, r)− F (−)[`][`′](k, r)]

(33)

which transforms the ansatz (15) into the form

8[`][`′](k, r) = j`(kr)A[`][`′](k, r)− n`(kr)B[`][`′](k, r) (34)

and the corresponding linear combination of equations (17) gives the alternative form
∂rA[`][`′](k, r) = −n`(kr)

k

∑
[`′′]

W[`][`′′](r)[j`′′(kr)A[`′′][`′](k, r)− n`′′(kr)B[`′′][`′](k, r)]

∂rB[`][`′](k, r) = −j`(kr)
k

∑
[`′′]

W[`][`′′](r)[j`′′(kr)A[`′′][`′](k, r)− n`′′(kr)B[`′′][`′](k, r)].

(35)

Likewise, the iterative procedure (19), (20) transforms into

A
(0)
[`][`′](k, r) = δ[`][`′] B

(0)
[`][`′](k, r) = 0 (36)

A
(n+1)
[`][`′] (k, r) = δ[`][`′] − 1

k

∫
n`(kr)

∑
[`′′]

W[`][`′′](r)[j`′′(kr)A
(n)
[`′′][`′](k, r)

−n`′′(kr)B(n)[`′′][`′](k, r)] dr

B
(n+1)
[`][`′] (k, r) = −

1

k

∫
j`(kr)

∑
[`′′]

W[`][`′′](r)[j`′′(kr)A
(n)
[`′′][`′](k, r)

−n`′′(kr)B(n)[`′′][`′](k, r)] dr.

(37)

The representation of‖8‖ in terms of‖A‖, ‖B‖ and‖F (±)‖ is equivalent. From a practical
point of view, however, it is more convenient to start the integration of equations (35) from
the boundary valuesA[`][`′](k, δ), B[`][`′](k, δ) and at some intermediate pointrint (far enough
from the origin) to go over to equations (17) with starting valuesF

(±)
[`][`′](k, rint) obtained

from A[`][`′](k, rint) andB[`][`′](k, rint) via the linear combinations (33).
One may argue that we can abandon equations (17) altogether and integrate equation (35)

on the whole interval [δ, rmax] instead. However,‖F (+)(k, r)‖ and‖F (−)(k, r)‖ have finite
limits (r →∞) in different domains of the complexk-plane (below and above the dividing
line respectively). The only points where they have limits simultaneously are the spectral
points and the dividing line itself. Since‖A‖ and ‖B‖ involve both‖F (±)‖, they have
limits only at these points. Therefore, to obtain the Jost matrix we should start at smallr

with equations (35) and finish at largermax with equations (17).
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3. Physical solutions

In the following we shall describe how we can obtain a physical solution from the regular
basis. In general, each column representing a physical solution is a linear combination of
the basic columns,

u[`](k, r) =
∑
[`′]

8[`][`′](k, r)c[`′]

u[`′][`](k, r) =
∑
[`′′]

8[`′][`′′](k, r)c[`′′][`]
(38)

with the coefficients‖c‖ defined by the physical boundary condition (10) at large distances.

3.1. Bound states

The bound-state wavefunction vanishes at large distances as∑
[`′]

8[`][`′](k, r)c[`′] −→
r→∞N[`]e

−|k|r −→
r→∞0

where N[`] are the asymptotic normalization constants. In this equation the function
8[`][`′](k, r) can be replaced by its asymptotic form (22), i.e.

1
2

∑
[`′]

[h(+)` (kr)F (+)[`][`′](k)+ h(−)` (kr)F (−)[`][`′](k)]c[`′] −→
r→∞0. (39)

For bound states Imk > 0 and the Riccati–Hankel functionh(+)` (kr) decays exponentially
while h(−)` (kr) grows exponentially. Therefore condition (39) can only be fulfilled if we
find coefficientsc[`] such that the diverging functionsh(−)` (kr) of different columns cancel
out, that is, if ∑

[`′]

F (−)[`][`′](k)c[`′] = 0. (40)

This system of homogeneous linear equations has a non-trivial solution if and only if

det‖F (−)(k)‖ = 0. (41)

Therefore, we can locate all possible bound states by looking for zerosk0 of the Jost-matrix
determinant on the positive imaginary axis (see figure 1). For each zerok0 thus found,
the coefficientsc[`] are then uniquely determined by the system (40) apart from a general
normalization factor which is finally fixed when the physical wavefunction,

9k0JM(r) =
1

2r

∑
[`][`′]

YJM[`] (r̂)[h
(+)
` (k0r)F

(+)
[`][`′](k0, r)+ h(−)` (k0r)F

(−)
[`][`′](k0, r)]c[`′] (42)

is normalized. The contribution of each element of the column

u[`](k0, r) = 1
2

∑
[`′]

[h(+)` (k0r)F
(+)
[`][`′](k0, r)+ h(−)` (k0r)F

(−)
[`][`′](k0, r)]c[`′] (43)

into the normalization integral represents what is usually called the percentage of the
corresponding partial wave.
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3.2. Scattering states

The scattering states normalized to theδ-function,

〈9ksµ|9k′s ′µ′ 〉 = δ(k − k′)δss ′δµµ′
are defined by the following asymptotic condition

9ksµ(r)−→
r→∞

1

(2π)3/2

[
eik·rχsµ + eikr

r

∑
s ′µ′

fs ′µ′sµ

(
k
r

r
,k
)
χs ′µ′

]
(44)

where fs ′µ′sµ(k′,k) is the scattering amplitude. The partial wave decomposition of
equation (44) gives for the boundary condition (10) (see [1])

u[`′][`](k, r)−→
r→∞

1
2[h(−)`′ (kr)δ[`′][`] + h(+)`′ (kr)S

J
[`′][`](k)]. (45)

Therefore the choice of our ansatz (15) for the regular basis is natural and suitable not only
for constructing the bound states but the scattering states as well. Indeed, comparing (45)
with (22) we find that the coefficientsc[`′][`] in (38) should be chosen as

c[`′][`] = ‖F (−)[`′][`](k)‖−1

which gives us theS-matrix in the form

‖S(k)‖ = ‖F (+)(k)‖ · ‖F (−)(k)‖−1. (46)

Thus, the normalized scattering wavefunction can be constructed from the regular basis as
follows

9ksµ(r)
1√

2πkr

∑
JM`

∑
[`′]

∑
[`′′]

YJM[`′] (r̂)Y
JM∗
[`]µ (k̂){h(+)`′ (kr)F

(+)
[`′][`′′](k, r)

+h(−)`′ (kr)F
(−)
[`′][`′′](k, r)}‖F (−)[`′′][`](k)‖−1. (47)

The scattering phase shifts together with the mixing parameters can be found from the
S-matrix given by equation (46).

3.3. Resonances

The resonance (or Siegert) states are described by wavefunctions which at large distances
only have outgoing spherical waves

9kJM(r) = 1

r

∑
[`]

YJM[`] (r̂)u
J
[`](k, r)−→

r→∞ ∼
eikr

r
. (48)

More precisely, the resonant boundary condition at larger is

uJ[`](k, r)−→
r→∞N

J
[`](k)h

(+)
` (kr) (49)

whereNJ
[`](k) are the partial-wave normalization constants. Since there is not a generally

accepted convention about the normalization of Siegert states, theNJ
[`](k) may involve

an arbitrary coefficient. Solutions of the Schrödinger equation, with the long-range
behaviour (49), may exist only at discrete points of the complexk-plane, situated below the
real axis (see figure 1). The corresponding radial wavefunctions are regular at the origin
and are therefore linear combinations of the regular basis

u[`](k, r) = 1
2

∑
[`′]

{h(+)` (kr)F
(+)
[`][`′](k, r)+ h(−)` (kr)F

(−)
[`][`′](k, r)}c[`′] . (50)
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This equation can be used to locate resonances. Similarly to the bound states, we simply
require that

lim
r→∞

∑
[`′]

F
(−)
[`][`′](k, xeiθ )c[`′] = 0 θ > 0 (51)

which means thatu[`](k, r) is expressed only in terms ofh(+)` (k, r) at large distances.
Sinceθ can be chosen such that Imkr > 0, the Riccati–Hankel functionh(+)` (kr) decays
exponentially when|r| → ∞. This in turn means that the Siegert states are quadratically
integrable according to (49) and hence they acquire the same properties as the bound states.
Therefore, with the coordinate rotation the bound and resonance states can be treated in the
same way. In particular, the position of a resonance is defined by equation (41), and its
(rotated) wavefunction by equation (42) wherer is now complex.

Since this wavefunction is square integrable we can normalize it to unity and thus the
normalization constantsNJ

[`] in (49) can be fixed in a natural way. Therefore the proposed
method enables us not only to locate the position of the resonances as zeros of the Jost
matrix determinant but also to obtain the correct normalization constantsNJ

[`] . In order
to obtain physical (unrotated) Siegert wave functions, the Schrödinger equation must be
integrated along realr inwards using the boundary condition (49), the found momentum
k0 and normalization constants. This integration will automatically provide a wavefunction
which is zero atr = 0 becausek0 is a spectral point.

4. Examples

In order to demonstrate the effectiveness of the method we consider as an example the
nucleon–nucleon (NN) interaction in the triplet spin-state, i.e. when the total spins = 1.
From the Pauli principle it follows thats is conserved (see for example [15]), and thus the
sum over [̀ ] is reduced to

∑
`. The triplet NN potential can couple at most two partial

waves, with` = J − 1 and` = J + 1, as the state with̀ = J has different parity and
therefore must be excluded. We consider here the even state of two nucleons withJ = 1,
in which they can form the deuteron. The partial-wave decomposition of this state consists
of coupledS andD waves.

The corresponding NN potential includes the following three most important terms

V (r) = Vc(r)+ Vt(r)S12+ V`s(r)(` · s) (52)

known as the central, tensor, and spin-orbit potentials. The second term contains the tensor
operator

S12 = 3

r2
(σ1 · r)(σ2 · r)− (σ1 · σ2)

which is responsible for the coupling of different partial waves. This is clearly seen from
the structure of the matrix‖W‖ defined by equation (4), which in the case ofs = 1, J = 1,
andπ = +1 reads (see for example [1])(

W00 W02

W20 W22

)
≡ 2m

(
Vc 2

√
2Vt

2
√

2Vt Vc − 2Vt − 3V`s

)
(53)

where the subscripts of‖W``′ ‖ correspond to the two partial waves` = 0 and` = 2.
In accordance with restriction (5) we may use at short distances the series expansion

W``′(r)−→
r→0

a``′r
−1+ b``′ + c``′r + · · · (54)

which is general enough to include potentials having a soft core (a``′ 6= 0).
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Using (54) we can obtain the corresponding expansions forA``′(k, r) and B``′(k, r)
via the iterative procedure (36), (37) which are needed to impose the boundary conditions
A``′(k, δ) andB``′(k, δ) at a smallδ. These expansions near the pointr = 0 can be obtained
in an explicit form. For this we replace the Riccati functions in the indefinite integrals (37)
by their series expansions [12]

j0(kr) = kr − (kr)
3

6
+ (kr)

5

120
− · · ·

j2(kr) = (kr)3

15
− (kr)

5

210
+ (kr)

7

7560
− · · ·

n0(kr) = −1+ (kr)
2

2
− (kr)

4

24
+ · · ·

n2(kr) = − 3

(kr)2
− 1

2
− (kr)

2

8
− · · · .

Substituting (36) into (37) and performing the integrations overr for each element of the
matrices‖A‖ and‖B‖ we obtain

‖A(1)(k, r)‖ =
 1+ a00r

a02k
2

45
r3

−3a20

k2
r−1 1+ a22

5
r

 ‖B(1)(k, r)‖ =

 −a00k

2
r2 −a02k

3

60
r4

−a20k
3

60
r4 −a22k

5

1350
r6


where we retain only one additional term in each matrix element. For the second iteration
we obtain

‖A(2)(k, r)‖ =

 1+ a00r + ζ00

2
r2 a02k

2

45
r3+ k

2ζ02

60
r4

−3a20

k2
r−1+ 3ζ20

k2
ln r 1+ a22

5
r + ζ22

10
r2



‖B(2)(k, r)‖ =

 −
a00k

2
r2− kζ00

3
r3 −a02k

3

60
r4− k

3ζ02

75
r5

−a20k
3

60
r4− k

3ζ20

75
r5 −a22k

5

1350
r6− k

5ζ22

1575
r7


where the constantsζ``′ are defined as

(
ζ00 ζ02

ζ20 ζ22

)
=


a2

00

2
+ b00− a02a20

4

a00a02

12
+ b02+ a02a22

6
a20a00

2
+ b20− a22a20

4

a20a02

12
+ b22+ a

2
22

6

 .
The iterations can be continued in the same manner with each iteration adding a new term to
each matrix element having a higher power ofr than the previous one. All matrix elements
of ‖A‖ and‖B‖ are regular whenr → 0 except for the left bottom corner element of‖A‖.
It has two singular terms,∼ r−1 and∼ ln r. The next iteration, however, gives for it a
vanishing term of the kind∼ r ln r, and all subsequent terms are vanishing even faster.

The above expansions illustrate the fact that at smallr the matrices‖F (+)‖ and‖F (−)‖
converge to each other. Indeed, since we have‖B‖ = o(‖A‖) for all matrix elements, the
second term in the linear combinations‖F (±)‖ = ‖A‖ ± i‖B‖ vanishes faster than the first
one asr → 0.

The singularities of the matrix‖A[`][`′](k, r)‖ reflects the main difficulty of the theory
of coupled partial waves, which precluded its development in the past. As we show in the
appendix, the matrix elements of‖F (±)[`][`′](k, r)‖ with ` > `′ are always singular atr = 0
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if the potential is non-zero at that point. Nevertheless the functions8[`][`′](k, r) always
remain regular because in equation (34) the singularity ofA[`][`′](k, r) is compensated for
by j`(kr). In our case we have

‖8‖ =
(
j0 0
0 j2

)(
A00 A02

A20 A22

)
−
(
n0 0
0 n2

)(
B00 B02

B20 B22

)
(55)

and therefore the singular termA20(k, r) appears only in the productj2(kr)A20(k, r) which
vanishes at the origin as∼ r2. Substituting the series expansions of all functions involved
into equation (55) we obtain

‖8(k, r)‖−→
r→0

(
kr + a00k

2 r2 + ζ00k

6 r
3 +O(r4 ln r) a02k

3

180 r
4 + ζ02k

3

300 r
5 +O(r6)

− a20k

4 r2 + ζ20k

5 r
3 ln r − ζ20k

25 r
3 +O(r4 ln r) k3

15r
3 + a22k

3

90 r
4 + ζ22k

3

210 r
5 +O(r6)

)
(56)

which explicitly demonstrates that our regular basis obeys the boundary condition (14) and,
as mentioned in section 2, in each row the convergence to zero increases from left to right
while in each column the diagonal elements have the lowest vanishing speed. The linear
independence of these columns is also apparent. In view of the off-diagonal elements, even
the leading terms of them depend on the behaviour of the potential, i.e. it is impossible to
specify the boundary condition for them in a general form independently of the potential.

Using a quite different approach, Palumbo [10] derived recurrence formulae for directly
constructing the series expansion of the regular basis for the potentials of the type (54).
Having performed few iterations of Palumbo’s formulae, we found that they generate the
same terms as those in equation (56). This is yet another confirmation that our iterative
procedures (19), (20) and (36), (37) are correct.

In order to test the proposed method numerically, we choose two different NN potentials
of the type (54). The first one is the Reid soft-core (RSC) potential [16], which forJ = 1,
s = 1, π = +1 has the following form

Vc(r) = h0
e−αr

αr
+ h1

e−2αr

αr
+ h2

e−4αr

αr
+ h3

e−6αr

αr

Vt (r) = h0

{[
1

αr
+ 3

(αr)2
+ 3

(αr)3

]
e−αr −

[
12

(αr)2
+ 3

(αr)3

]
e−4αr

}
+h4

e−4αr

αr
+ h5

e−6αr

αr

V`s(r) = h6
e−4αr

αr
+ h7

e−6αr

αr

(57)

with

h0 = −10.463 MeV h1 = 105.468 MeV h2 = −3187.8 MeV

h3 = 9924.3 MeV h4 = 351.77 MeV h5 = −1673.5 MeV

h6 = 708.91 MeV h7 = −2713.1 MeV α = 0.7 fm−1.

The second potential used, is the Moscow potential [17],

Vc(r) = V1e−ηr
2 + V2(1− e−γ r )

e−βr

βr

Vt (r) = V2

[
1+ 3

βr
+ 3

(βr)2

]
(1− e−γ r )3

e−βr

βr

V`s(r) ≡ 0

(58)
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Table 1. Bound states generated by the RSC and Moscow potentials.

Our method [16–18]

Potential k0 (fm−1) E0 (MeV) D% E0 (MeV) D%

RSC i0.231 6110 −2.224 60 6.470 −2.224 60 6.470
Moscow i3.557 1773 −524.741 14.36 −524.8 —
Moscow i0.231 6000 −2.224 39 6.588 −2.224 6 6.778

with

V1 = −466.74 MeV V2 = −10.69 MeV

β = 0.6995 fm−1 γ = 3 fm−1 η = 1.6 fm−2.

The RSC potential has a strong repulsion at small distances,

‖a``′ ‖ = 2m

α

(
h0+ h1+ h2+ h3 2

√
2(h4+ h5+ 23.5h0)

2
√

2(h4+ h5+ 23.5h0) h1+ h2+ h3− 2h4− 2h5− 46h0− 3h6− 3h7

)
≈ 2m

α

(
6832 MeV −4434 MeV
−4434 MeV 15979 MeV

)
.

In contrast, the Moscow potential has very strong attraction and sustains, apart from the
deuteron bound state, a very deep bound state known as the Pauli forbidden state (PFS). In
this case expansion (54) begins from the second term,

‖b``′ ‖ = 2m

(
V1+ V2

γ

β
6
√

2V2
γ 3

β3

6
√

2V2
γ 3

β3 V1+ V2
γ

β
(1− 6γ

2

β2 )

)
≈ 2m

( −513 MeV −7156 MeV
−7156 MeV 4547 MeV

)
.

Both potentials describe the deuteron properties and thenp-scattering quite well despite
their completely different short-range behaviour.

First we considered real energies corresponding to bound and scattering states. We
integrated equations (35) by the Runge–Kutta method fromrmin = 10−4 fm to rint = 1 fm
with the boundary conditions‖A(4)(k, rmin)‖ and ‖B(4)(k, rmin)‖. Then fromrint = 1 fm
we integrated equations (17) up tormax = 20 fm where the functionsF (±)(k, r) attain
their limits (23). Repeating such calculations with different values of the momentumk

corresponding to points on the positive imaginary axis, we found that the equation

det‖F (−)(k, rmax)‖ = 0 (59)

is fulfilled at the pointsk0 given in table 1. The binding energies and the percentages of the
D-waves (D%) are also given in this table. For comparison table 1 contains the energies
andD% obtained originally in [16–18] by the authors that constructed these potentials.
Other observables such as the mean square radius and the electric quadrupole moment of
the deuteron are also the same as those given in [16, 17]. Due to the presence of the
deep unphysical PFS state in the Moscow potential the deuteron state is an excited one and
therefore its wavefunction has a node atrc ∼ 0.59 fm.

For real positivek, i.e. for scattering states, we performed calculations with the same
rmin, rint, andrmax. According to equation (46) the product

‖F (+)(k, rmax)‖ · ‖F (−)(k, rmax)‖−1 = ‖S(k)‖
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gives us theS-matrix which contains information about the scattering observables. The
NN S-matrix is usually parametrized in terms of the so-calledbar phase shifts and mixing
parameter, introduced in [19], as follows(

S00 S02

S20 S22

)
=
(

e2iδ̄0 cos 2̄ε iei(δ̄0+δ̄2) sin 2̄ε
iei(δ̄0+δ̄2) sin 2̄ε e2iδ̄2 cos 2̄ε

)
.

From this matrix equation one obtains

δ̄0 = ln S00

2i

√
1− S2

02

S00S22

δ̄2 = ln S22

2i

√
1− S2

02

S00S22

ε̄ = 1

4
arccos

(
S00S22+ S2

02

S00S22− S2
02

)
.

The obtained phase shifts and mixing parameters are in agreement with the values given
in [16], for all collision energies examined (up toEc.m. = 176 MeV). For example, at
Ec.m. = 12 MeV (k = 0.537 93 fm−1) the RSC potential gives†
‖F (±)(k, rmax)‖

=
(

0.162 47× 1011∓ i0.183 86× 1012 −0.609 05× 105± i0.689 23× 106

−0.133 90× 1013± i0.610 83× 1011 0.501 94× 107∓ i0.228 98× 106

)
and

‖S(k)‖ =
(−0.956 40+ i0.285 07 −0.062 32+ i0.012 29
−0.062 32+ i0.012 29 0.993 03− i0.099 33

)
.

From the latterS-matrix we obtain the following scattering parameters

δ̄0 = 1.4288 δ̄2 = −0.049 95 2̄ε = 0.063 57

which are practically the same as those obtained by Reid [16]

δ̄0 = 1.426 δ̄2 = −0.050 2̄ε = 0.064

via a direct solution of the Schrödinger equation.
The Moscow potential at the same energy gives different Jost matrices,

‖F (±)(k, rmax)‖ =
(−361.16± i4347.4 −0.084 58± i1.0183

30 864∓ i1423.1 7.2291∓ i0.333 31

)
but practically the sameS-matrix

‖S(k)‖ =
(−0.955 57+ i0.287 72 −0.062 83+ i0.012 52
−0.062 83+ i0.012 52 0.992 68− i0.100 59

)
and therefore the same phase shifts and mixing parameter

δ̄0 = 1.4275 δ̄2 = −0.050 59 2̄ε = 0.064 11.

The huge values of the above Jost matrix elements are due to the behaviour of the potentials
at small distances, which generates large values of the derivatives∂r‖F (±)(k, r)‖ that pushes
up the absolute values of the functionsF (±)[`][`′](k, r). To demonstrate an opposite example,

† The calculated‖F (+)(k, rmax)‖ and ‖F (−)(k, rmax)‖ are complex conjugate to each other at least within five
digits.
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we solved equations (17) at the same energy (Ec.m. = 12 MeV) with a rudimentary NN
potential (also in the deuteron channel) consisting of two Yukawa-type terms [20],

V (r) = vc exp(−ωr/ρc)
r/ρc

+ vt exp(−ωr/ρt )
r/ρt

S12 (60)

with

vc = −22.7 MeV vt = −10.9 MeV

ω = 2.12 ρc = 2.47 fm ρt = 3.68 fm.

Like the RSC it is singular atr = 0, but the coefficients

‖a``′ ‖ = 2mρc

(−22.7 MeV −45.9 MeV
−45.9 MeV 9.8 MeV

)
for its expansion (54) are two orders of magnitude less than those for the RSC potential.
As a result the Jost matrices calculated atEc.m. = 12 MeV are

‖F (±)(k, rmax)‖ =
(

0.273 28± i0.878 45 0.112 04± i0.237 30
3.8437∓ i0.376 53 1.687 6∓ i0.156 58

)
while theS-matrix is

‖S(k)‖ =
(−0.987 55+ i0.105 46 0.115 64− i0.015 980

0.115 64− i0.015 980 0.979 14− i0.166 31

)
are δ̄0 = 1.53, δ̄2 = −0.0847, andε̄0 = 0.117.

Heretofore we have dealt with momenta on and above the real axis(Im k > 0) and
therefore the coordinate rotation (29) was not needed. Consider now a pointk which is under
the real axis. To obtain the Jost matrix‖F (−)(k)‖ in this domain of thek-plane, we must
integrate the rotated equations (30) (withθ > 0) along the real variablex = |r|. Similarly
to the case withθ = 0, in the immediate vicinity of the pointx = 0 it is convenient, for
numerical reasons, to replace‖F (±)‖ with their linear combinations (33) and the equations
(30) with the corresponding linear combinations of them. The resulting rotated equations
for ‖A‖ and‖B‖ as well as the rotated iterative equations follow immediately from (35),
(36), and (37) after simple replacement ofr by x exp(iθ).

To demonstrate the ability of the method to deal with momenta of the fourth
quadrant of thek-plane, we calculated the Jost matrix for the RSC potential atk =
0.5 exp(−i0.3π) fm−1, i.e. atEc.m. ≈ (−3.20− i9.86) MeV, with three different values
of the rotation angle:θ = 0, 0.35π, 0.4π . The results obtained are given in table 2. The
first line of this table demonstrates that the unrotated equations cannot give a correctθ -
independent Jost matrix when Imk < 0. The matrix obtained withθ = 0 is alsor-dependent,
i.e. has no limit when|r| → ∞. If, however,θ is large enough, such that Imkr > 0 and the
point k is above the dividing line, then‖F (−)(k, xmaxeiθ )‖ does not depend onθ (compare
the second and third lines of the table) andxmax. To achieve thexmax-independence when
θ 6= 0, we have to go further afield because the potential vanishes along thex exp(iθ) slower
than along the realr. Thus, the results given in table 2 were obtained withxmax= 50 fm.

The number of digits which are unchanged under the rotation show the accuracy
achieved. It is interesting to note in this connection that the accuracy of the second column
of the Jost matrix as well as of the determinant always turn out to be much higher than
that of the Jost matrix first column. This is exemplified in the last two lines of table 2. It
is interesting to note that the correct value of the determinant can be obtained even with
crude boundary conditions and large tolerance of the Runge–Kutta procedure. Thus, the
correct binding energy of the deuteron (given in table 1) can be obtained even with boundary
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Table 2. Jost matrix for the RSC potential atk = 0.5 exp(−i0.3π) fm−1, calculated with
xmax= 50 fm and three different values of the rotation angleθ .

θ ‖F (−)(k, xmaxeiθ )‖

0

(
22 637 458 292 890+ i14 763 693 403 731 −22 818 484+ i84 501 579
8 536 691 059 869+ i6 193 286 881 927 −10 532 586+ i32 492 267

)

0.35π

(−325 291 222 087+ i639 117 048 997 −2 294 097− i362 305
145 085 673 415− i1 488 370 181 212 4 729 536− i1 042 674

)

0.40π

(−325 288 820 471+ i639 116 901 481 −2 294 097− i362 305
145 081 315 229− i1 488 368 045 635 4 729 536− i1 042 675

)

conditions‖A(1)(k, rmin)‖ and ‖B(1)(k, rmin)‖ when the first column of‖F (−)(k, rmax)‖ is
even wrong. The only explanation for this is that somehow both elements of this column
find the same erroneous term which cancels out in the determinant. This observation means
that the procedure of locating spectral points is less demanding and less delicate than the
calculations of the corresponding wavefunctions.

None of the potentials (57), (58), (60) generate resonances (at least at reasonably low
energies). To the best of our knowledge, non-central potentials generating resonances have
not yet been published. Thus, in order to demonstrate the ability of our method to locate
Siegert states we constructed an artificial potential with a rich spectrum. For this we used
the well known central potential

Vc(r) = 7.5r2 exp(−r) (61)

which is widely used as a testing case for new methods that locate resonances (see for
example [7, 21–23]). It is usually assumed that this potential is given in atomic units. In
order to be consistent, however, with the potentials used in this work, we assume that it is
given here in MeV. Then for ¯h2/2m = 1

2 MeV fm−2, the numerical values of the resonance
energies are the same in MeV and in atomic units.

This potential generates a sequence ofS-wave resonances (see [7]) which cannot be
significantly displaced if we add very weak interaction in theD-wave and a weakS–D
coupling. Thus the non-central potential coupling of theS andD partial waves which is
represented by the matrix

‖W``′(r)‖ = 2m

(
7.5r2 exp(−r) −λr2 exp(−r)
−λr2 exp(−r) −λr2 exp(−r)

)
(62)

should generate resonances at least whenλ is small. Bound states can also be generated
by increasingλ since we have chosen a negative sign for theD-wave potential and for the
off-diagonal elements of the matrix (62).

Of course the use, as a testing case, of a potential with a weakD-wave and weak
coupling is rather undesirable. Therefore, we gradually increasedλ up to the value
λ = 15 MeV. The resulting spectrum is given in table 3 and depicted in figure 2. It consists
of eight bound states and a sequence of resonances (we show only six of them, nearest to
the real axis). By the large open circles in figure 2 we also show the positions of the first
three resonances whenλ = 0 which coincide with the resonances of the potential (61) found
in [7]. The small open circles show their movement whenλ is gradually increased in steps
of 1λ = 1 MeV. The digits displayed in table 3 are those which do not change when the
rotation angle changes and thus they represent the accuracy of our calculations.
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Table 3. Spectral points of the model potential (see text) withλ = 15 MeV.

Rep0 (fm−1) Imp0 (fm−1) E0 (MeV) 0 (MeV)

0 4.558 153 1714−10.388 380 1672 0
0 4.023 079 863 −8.092 585 79 0
0 3.471 206 989 −6.024 638 98 0
0 2.899 849 780 −4.204 564 37 0
0 2.305 427 868 −2.657 498 83 0
0 1.681 898 798 −1.414 391 78 0
0 1.016 190 35 −0.516 321 4 0
0 0.254 097 −0.032 282 6 0
3.446 608 92 −0.530 114 39 5.799 045 90 3.654 194 0
4.138 807 8309−0.146 714 8600 8.554 102 5053 1.214 449 223
4.465 210 96 −0.686 071 761 9.733 707 24 6.126 910 30
4.744 324 −1.332 365 10.366 71 12.642 34
4.963 56 −1.997 19 10.324 1 19.826 3
5.141 0 −2.663 4 9.668 1 27.385

Figure 2. Spectral points (full circles) of the model potential withλ = 15 MeV. The large open
circles represent three of the resonances generated by the central potentialVc and the small open
circles show the movement of the resonances whenλ decreases from 15 to 0 MeV in steps of
1λ = 1 MeV. The dividing line corresponds toθ = 0.2π .

5. Conclusions

This work is a continuation of a series of papers [4, 6, 7] in which a practical method for
quantum mechanical calculations is developed. The method is based on direct calculations
of the Jost function and Jost solutions and is a combination of the variable–constant method
with the complex coordinate rotation. We have extended it here to include non-central
potentials.
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The proposed method offers a unified way of treating bound- , scattering- and resonance-
state problems. It is a powerful method which enables us to investigate the analytical
properties of the Jost function in the complex momentum plane. This reveals new
possibilities in locating resonances. Within this method the Siegert wavefunctions can
be properly normalized. Even subthreshold resonances can be located which is a difficult
task for many other methods. Moreover the formalism presented can be easily extended to
complex values of the angular momentum̀and therefore Regge trajectories can also be
located [7].

The wavefunction can be obtained in a form which guarantees its correct asymptotic
behaviour for all three types of physical problems. In all cases the same accuracy can be
achieved which can be reliably controlled by simply changing the rotation angle.

Despite the restriction (6), the potentials with Coulomb tails can be incorporated into
the proposed method in a straightforward way as it was done in our previous publications
[6, 7]. To do this we need only replace, in all formulae, the Riccati–Bessel functions with
the corresponding Coulomb functions.

The method can be extended further: first, to treat theN -body coupled hyper-radial
equations which differ from the two-body radial equations only by the possibility of having
half-integer values of̀ ; secondly, to investigate the behaviour of the coupled partial waves
when the angular momenta is complex valued; thirdly, to treat non-analytical and singular
potentials, and fourthly to treat coupled channel problems with different thresholds. The
work on all these extentions is under way.
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Appendix. Regular basis

By definition,‖8(k, r)‖ is a regular basis (fundamental matrix) if it has the following three
properties [1].

(i) Each column of‖8[`′][`]‖ is a solution of equation (11),
(ii) 8[`′][`](k, 0) = 0, ∀[`′], [`],
(iii) all columns of ‖8[`′][`]‖ are linearly independent.
Moreover,‖8‖ must be a square matrix since equation (11) has as many independent

regular column solutions as the column dimension [24].

A.1. Behaviour at short distances

The property (ii) implies that the boundary condition (12) should be imposed at the point
r = 0. Equation (11), however, is singular at the origin, and consequently the existence and
uniqueness theorem [24] is not valid at this point. This theorem is valid for allr > δ > 0
for any arbitrary smallδ. Hence, the matrix‖8‖ can be uniquely defined by‖8(k, δ)‖ and
∂r‖8(k, δ)‖, while within the interval [0, δ], ‖8(k, r)‖ (having the above three properties)
can be obtained explicitly as follows. After multiplying byr2 and using (5), equations (11)
decouple giving

[r2∂2
r − `(`+ 1)]8[`][`′](k, r) ≈ 0 r ∈ [0, δ]. (A1)



Jost function for coupled partial waves 5169

Each of these equations has two independent solutions behaving as∼ r`+1 and∼ r−` and
of course the trivial (zero) solution. Therefore a regular column consists only of∼ r`+1 and
zero elements. Therefore the only way to construct the regular matrix‖8(k, r)‖ obeying
equation (A1) with linearly independent columns, is to choose its diagonal as follows

‖8(k, r)‖ ∼
r→0


r`1+1 0 · · · 0

0 r`2+1 · · · 0
...

...
...

...

0 0 · · · r`N+1

 (A2)

which obviously satisfies the above-mentioned three properties. Higher-order corrections
to equation (A1) give, of course, non-zero off-diagonal elements. Each column of the
matrix (A2) is a solution of equation (A1) and therefore each column of‖8(k, r)‖ has,
separately, the short-range behaviour

8[`1][`n](k, r)

8[`2][`n](k, r)
...

8[`n][`n](k, r)
...

8[`N ][`n](k, r)


∼
r→0



0
0
...

r`n+1

...

0

 . (A3)

Hence whenr → 0 all elements on the left-hand side column of equation (A3) with
[`] 6= [`′] vanish faster than the one with [`] = [`′]. In other words, the off-diagonal
elements of a column are of lower order than the diagonal one. Therefore we can rewrite
equation (A2) indicating the higher-order corrections as follows

‖8(k, r)‖ ∼
r→0


r`1+1 o(r`2+1) · · · o(r`N+1)

o(r`1+1) r`2+1 · · · o(r`N+1)
...

...
...

...

o(r`1+1) o(r`2+1) · · · r`N+1

 . (A4)

The inclusion of the higher-order terms retains the linear independence of the columns.
Indeed,

det‖8(k, r)‖ =
∏
i

r`i+1+ o

(∏
i

r`i+1

)
because the products involving off-diagonal elements always contain at least one of the
factors o(r`1+1), o(r`2+1), . . . ,o(r`N+1). Hence

det‖8(k, r)‖−→
r→0

∏
i

r`i+1

and on the interval(0, δ] we can always find at least one pointr0 where det‖8(k, r0)‖ 6= 0.
This means that the columns of the matrix (A4) are linearly independent on the whole
interval (0, δ].

The structure of the matrix (A4) implies that the behaviour of the regular basis in the
immediate vicinity of the pointr = 0 is such that

lim
r→0

8[`][`′](k, r)

r`
′+1

= δ[`][`′] . (A5)
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Since we can choose the normalization constant in each element of the matrix‖8(k, r)‖
independently, we may replacer`

′+1 in the last equation by(kr)`
′+1 to find the boundary

condition in the form

lim
r→0

8[`][`′](k, r)

j`′(kr)
= δ[`][`′] . (A6)

To obtain the higher-order terms of (A4) in an explicit form we replace‖8(k, r)‖ with
the combination of the two new unknown matrix functions‖F (±)(k, r)‖, as given by
equation (15), which are subjected to the constraint (16) and obey equations (17). Since by
definition the matrix‖8(k, r)‖ is regular atr = 0, we have

h
(+)
` (kr)F

(+)
[`][`′](k, r)−→

r→0
−h(−)` (kr)F

(−)
[`][`′](k, r)

and the Lagrange condition (16) gives

h
(+)
` (kr)∂rF

(+)
[`][`′](k, r) = −h(−)` (kr)∂rF

(−)
[`][`′](k, r).

On the other hand

h
(+)
` (kr)

h
(−)
` (kr)

≡ j`(kr)+ in`(kr)

j`(kr)− in`(kr)
−→
r→0
−1

from which we conclude that forr ∼ 0 the matrices‖F (+)(k, r)‖ and ‖F (−)(k, r)‖ and
their first derivatives become identical, i.e.

‖F (+)(k, r)‖−→
r→0
‖F (−)(k, r)‖ (A7)

∂r‖F (+)(k, r)‖−→
r→0

∂r‖F (−)(k, r)‖. (A8)

The convergence rate is different for different matrix elements (see the proof at the end of
this section). However, for all of them, due to (A8), at least the leading terms of the series
expansions of‖F (+)(k, r)‖ and‖F (−)(k, r)‖ must coincide. Explicitly we have

8[`][`′](k, r)−→
r→0

1
2[h(+)` (kr)+ h(−)` (kr)]A[`][`′](k, r) = j`(kr)A[`][`′](k, r) (A9)

where the matrix‖A(k, r)‖ describes the (common) short-range behaviour of‖F (±)(k, r)‖.
Comparing equations (A7) and (A9) with equation (A6), we find the following boundary

conditions for the matrices‖F (±)(k, r)‖

lim
r→0

j`(kr)F
(±)
[`][`′](k, r)

j`′(kr)
= δ[`][`′] . (A10)

Note that unlike (A6), these conditions do not demand that all of the elements of
the matrices‖F (±)‖ be regular. Indeed, wheǹ > `′ equation (A10) holds even if
F
(±)
[`][`′](k, r) ∼ r−(`−`

′−ε) with any ε > 0. Hence, the left-bottom corners of the matrices
‖F (±)‖ may, in principle, have diverging elements. As can be seen from the structure of
the regular basis, equation (15), the functionsF (±)[`][`′](k, r) are closely related to the Jost
solutions and thus their singular behaviour is not surprising. The8[`][`′](k, r) itself always
remains regular due to the presence ofj`(kr) in (A9) which compensates for the diverging
terms.

Equation (A10) gives us the boundary conditions in explicit form only for the diagonal
elements of the matrices‖F (±)‖, while for the off-diagonal ones it only implies that
F
(±)
[`][`′] ∼ o(j`/j`′). To obtain them explicitly, let us take indefinite integrals in both sides

of equations (17). This gives

F
(±)
[`][`′](k, r) = constant± 1

ik

∫
h
(∓)
` (kr)

∑
[`′′]

W[`][`′′](r)8[`′′][`′](k, r)dr. (A11)
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The integration constants are fixed for the diagonal and the right-top corner elements by
the conditions (A10). Indeed, due to (5) the integrals in (A11) for` 6 `′ give functions
(
∫
r−`r−2+εr`

′+1 dr, ε > 0) which vanish atr = 0. Hence to fulfil (A10) we must set
constant= 1 for ` = `′ and constant= 0 for ` < `′. For the left-bottom elements we still
have to choose the normalization which is fixed by letting constant= δ[`][`′] . Thus finally

F
(±)
[`][`′](k, r) = δ[`][`′] ± 1

ik

∫
h
(∓)
` (kr)

∑
[`′′]

W[`][`′′](r)8[`′′][`′](k, r)dr (A12)

where the indefinite integrals should be understood as primitive functions since all arbitrary
constants have already been fixed.

Consider now equations (A12) on a small intervalr ∈ (0, δ], where all functions under
the integral can be replaced by their power-series expansions. While this is possible for
h
(±)
` (kr) andW[`][`′](r), for 8[`][`′](k, r) only the diagonal elements are known,

8[`][`](k, r) ≈ j`(kr) r ∈ (0, δ].
Equation (A4) shows that the elements of the matrix‖8‖ vanish (whenr → 0) with
different speeds. In particular, this speed increases from left to right in each row. At the
same time, within each column the element situated on the matrix diagonal has the lowest
vanishing speed. This means that the leading term of the series expansion of a column
is a column which is filled with zeros except for the diagonal element. Looking at either
the differential equations (17) or the integral equations (A12), we note that in fact they
are independent equations for each column. The series expansion of‖8‖ should therefore
be individually constructed for each column. Thus the leading term‖8(0)‖ of such an
expansion is

8
(0)
[`][`′](k, r) = j`(kr)δ[`][`′] r ∈ [0, δ] (A13)

which, according to (A9), implies that

F
(±)(0)
[`][`′] (k, r) = δ[`][`′] r ∈ [0, δ]. (A14)

Substituting (A13) into the indefinite integral (A12) and using the series expansions of
h`, j`, andW[`][`′] , we obtain the first iteration‖F (±)(1)‖ for all elements of the matrices
‖F (±)‖ and thus we find‖8(1)‖ which includes the next terms of the expansion of the
regular solution. Using this iterative procedure we can find as many terms of the expansion
as needed by use of the following recurrence formulae

F
(±)(n+1)
[`][`′] (k, r) = δ[`][`′] ± 1

ik

∫
h
(∓)
` (kr)

∑
[`′′]

W[`][`′′](r)8
(n)
[`′′][`′](k, r)dr (A15)

8
(n)
[`][`′](k, r) = 1

2[h(+)` (kr)F
(+)(n)
[`][`′] (k, r)+ h(−)` (kr)F

(−)(n)
[`][`′] (k, r)]. (A16)

Now we can show how fast the matrices‖F (+)(k, r)‖ and ‖F (−)(k, r)‖ converge to each
other whenr → 0. According to equation (33) we have

‖F (±)(k, r)‖ ≡ ‖A(k, r)‖ ± i‖B(k, r)‖.
The series expansions of the matrices‖A‖ and ‖B‖ at short distances can be obtained
iteratively using equations (36) and (37) which are equivalent to equations (A14)–(A16).
The leading terms of these expansions are defined by the indefinite integrals (primitive
functions)

A
(1)
[`][`′](k, r) = δ[`][`′] − 1

k

∫
n`(kr)W[`][`′](r)j`′(kr) dr

B
(1)
[`][`′](k, r) = −

1

k

∫
j`(kr)W[`][`′](r)j`′(kr) dr
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where the functionsj`(kr), n`(kr) and W[`][`′](r) should be replaced by their series
expansions. The above equations can be rewritten as

A
(1)
[`][`′](k, r) = δ[`][`′] +O

(∫
W[`][`′](r)r

`′−`+1 dr

)
B
(1)
[`][`′](k, r) = O

(∫
W[`][`′](r)r

`′+`+2 dr

)
.

Taking into account the condition (5), we get that the matrix

B[`][`′](k, r) = O
(∫

r`
′+`+ε dr

)
ε > 0

whereε defines the short-range behaviour of the potentialW(r) ∼ rε−2, always vanishes at
short distances and that

B[`][`′](k, r) = o(A[`][`′](k, r)) ∀ [`], [`′].

For the diagonal matrix elements the greater theε is, the faster the second term of
‖F (±)‖ ≡ ‖A‖± i‖B‖ vanishes. The rate at which the off-diagonal elements vanish depends
only on the column number, i.e.

B[`][`′](k, r)

A[`][`′](k, r)
= O

(
r`
′+`+ε+1

δ[`][`′] + r`′−`+ε
)
=
{
O(r2`+1+ε) [`′] = [`]

O(r2`+1) [`′] 6= [`].
(A17)

In section 4 we give the series expansions for the matrices‖A‖, ‖B‖, and‖8‖ explicitly
for a potential which couples two partial waves and forε = 1.

A.2. Behaviour at large distances

To analyse the long-range behaviour of the matrix-functions‖F (±)(k, r)‖ we rewrite the
system (17) as follows

∂rF
(±)
[`][`′](k, r) = ±

1

ik
h
(∓)
` (kr)

∑
[`′′]

W[`][`′′](r)8[`′′][`′](k, r). (A18)

Since the right-hand sides of these equations involve the basic solutions8[`][`′](k, r), we
need to know how these solutions behave in different domains of thek-plane whenr →∞.
To this end we consider equation (11) at larger. If the potential is of short range
(decaying exponentially or faster) these equations are reduced to the uncoupled Riccati–
Bessel equations, namely,

[∂2
r + k2− `(`+ 1)/r2]8[`][`′](k, r)−→

r→∞0. (A19)

Considering them as one matrix equation, then there are two linearly independent solutions
which can be chosen as

‖h(±)(kr)‖ ≡


h
(±)
`1
(kr) 0 · · · 0

0 h
(±)
`2
(kr) · · · 0

...
...

...
...

0 0 · · · h
(±)
`N
(kr)

 . (A20)

Any other solution is a linear combination of them. Therefore

‖8(k, r)‖ −→
r→∞‖h

(+)(kr)‖ · ‖C+‖ + ‖h(−)(kr)‖ · ‖C−‖ (A21)
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and according to (26)

‖8(k, r)‖ −→
r→∞exp(ikr)‖C̃+‖ + exp(−ikr)‖C̃−‖. (A22)

If Im kr = 0 then both terms of the last asymptotic relation are oscillating and therefore the
regular solution is bounded, i.e.

|8[`][`′](k, r)| 6 constant ∀`, `′ whenr →∞. (A23)

For Imkr 6= 0, the regular solution diverges due either to the first or the second term of
(A22). In this case we can keep only the diverging term of it, namely,

‖8(k, r)‖ ∼
r→∞exp(−ikr)‖C̃−‖ Im kr > 0 (A24)

‖8(k, r)‖ ∼
r→∞exp(+ikr)‖C̃+‖ Im kr < 0. (A25)

There are, however, special pointsk0 on the k-plane, called spectral points, where by
definition the regular solution contains only the first term of (A21), i.e.

‖8(k0, r)‖ def−→
r→∞exp(+ik0r)‖C̃+‖. (A26)

Spectral points situated on the positive imaginary axis correspond to bound states, and those
situated under the real axis to resonance states.

Although we have derived equations (A23)–(A25) describing the asymptotic behaviour
of the regular basis, under the assumption that the potential is of the short range, they should
be valid also for potentials decaying faster than∼ 1/r. The general proof, however, requires
more sophisticated mathematical methods which are beyond the scope of this article.

Using equations (A22), (A24)–(A26), and the asymptotic form of the Riccati–Hankel
functions, equation (26), together with the constraint on the long-range behaviour of the
potential,W(r) ∝ r−(1+ε), ε > 0, we find from equation (A18) that in general the derivatives
of ‖F (+)(k, r)‖ and‖F (−)(k, r)‖ vanish or grow exponentially in the different domains of
the k-plane, namely

∂r‖F (+)(k, r)‖ ∝
r→∞



exp(−2ikr)

r1+ε Im kr > 0

‖C̃+‖ + exp(−2ikr)‖C̃−‖
r1+ε Im kr = 0

1

r1+ε Im kr < 0

(A27)

∂r‖F (−)(k, r)‖ ∝
r→∞



1

r1+ε Im kr > 0

exp(2ikr)‖C̃+‖ + ‖C̃−‖
r1+ε Im kr = 0

exp(2ikr)

r1+ε Im kr < 0.

(A28)

It is clear that‖F (+)(k, r)‖ and‖F (−)(k, r)‖ have no limits atr = ∞ when Imkr > 0 and
Im kr < 0 respectively because their derivatives grow exponentially in these domains. In
the mirror domains, Imkr < 0 and Imkr > 0, these derivatives vanish rapidly enough to
guarantee the existence of limits. Indeed, the behaviour

dϕ(r)

dr
∼

r→∞ r
−(ε+1) ε > 0



5174 S A Rakityansky and S A Sofianos

of the derivative of a functionϕ(r) is a sufficient condition for the existence of its limit at
larger since the asymptotic behaviour of the function itself can be written as

ϕ(r) ∼
r→∞

∫
r−(ε+1) dr =

(
constant− 1

εrε

)
−→
r→∞ constant.

On the dividing line, Imkr = 0, which separates the mirror domains, both derivatives

∂r‖F (±)(k, r)‖ ∝
r→∞

exp(∓2ikr)‖C̃∓‖ + ‖C̃±‖
r1+ε (A29)

oscillate with vanishing amplitude. From the above equation it follows that

‖F (±)(k, r)‖ = ‖F (±)(k, R)‖ + constant

r∫
R

exp(∓2ikρ)‖C̃∓‖ + ‖C̃±‖
ρ1+ε dρ (A30)

whereR is a sufficiently large radius beyond which the asymptotic behaviour (A29) is
valid. Therefore on the dividing line the limits‖F (±)(k,∞)‖ exist, because the integral in
equation (A30) converges. The last is obvious since

r∫
R

∣∣∣∣exp(∓2ikρ)

ρ1+ε

∣∣∣∣ dρ = 1

εRε
− 1

εrε
.

At spectral points we have

∂r‖F (+)(k, r)‖ ∝
r→∞

1

r1+ε ∂r‖F (−)(k, r)‖ ∝
r→∞

exp(2ik0r)

r1+ε

which implies that‖F (+)(k, r)‖ has a limit at all of them. In contrast‖F (−)(k, r)‖ has a
limit only at those points situated above or on the dividing line. Therefore the only points
where both limits lim

r→∞‖F
(±)(k, r)‖ exist simultaneously are those with Imkr = 0 and the

spectral points with Imkr > 0.
For realr then lim

r→∞‖F
(+)(k, r)‖ exists for Imk 6 0 and at the spectral points, while

lim
r→∞‖F

(−)(k, r)‖ exists for Imk > 0. In this case the dividing line that separates the two

domains of thek-plane coincide with the real axis. This line can be turned downwards, to
expose the resonance spectral points, by rotatingr as given by equation (29). Indeed, ifφ
is the polar angle parametrizing a point on thek-plane

k = |k|eiφ

then by choosing large enoughθ > 0 we can make Imkr,

Im kr = Im (|k|xei(φ+θ)) = |k|x sin(θ + φ) (A31)

positive even whenφ is negative,−θ 6 φ 6 π − θ , i.e. when the pointk is in the
fourth quadrant. From the last equation is clear that whenθ 6= 0 the dividing line is
[−∞e−iθ ,+∞e−iθ ] (see figure 1).

It is worthwhile to mention that the border separating the two domains of the complex
k-plane is a line only in the case of long-range potentials obeying the condition (6). If,
however, the potential decays at larger exponentially, then lim

r→∞‖F
(+)(k, r)‖ exists also

within a band above the dividing line while lim
r→∞‖F

(−)(k, r)‖ in the symmetric band below

this line. The faster the potential decays the wider this band is. For example, if the potential
decays as∼ exp(−µr) then the right-hand side of the second equation of the system (A18)
behaves, below the dividing line(Im kr < 0), as

∂rF
(−)(k, r) ∼ eikre−µreikr = ei(2Rekr−µIm r) exp(−2Imkr − µRer).
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The last exponential function decays at large distances if Imkr > −µ

2 Rer, i.e. when

|k| sin(θ + φ) > −µ
2

cosθ. (A32)

If θ = 0, this condition reads Imk > −µ/2 which enables us to also locate virtual states
(spectral points on the negative imaginary axis) situated not far from the origin.
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